Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Fuel

Brent J. Heuser, PI Nuclear, Plasma, & Radiological Engineering University of Illinois at Urbana-Champaign

ENGINEERING AT ILLINOIS

US DOE NEUP ATF-IRP—UIUC Prime

Objectives and Background

- Response to large amounts of H generation due to high temperature oxidation of Zr-base cladding
- A major concern both Post-Three Mile Island and Post-Fukushima
- Several US and International Programs <u>Issues</u>: Extensive experience with Zr-based cladding
 - Irradiation performance, processing experience, ...
 - Qualification issues, ...

EERIN

G I N

Ν

• Very difficult to move to a new cladding material

<u>Approach</u>: Examine Zr-based cladding with improved high temperature oxidation resistance

G

N

0

Participants

G

Ν

Е

Ν

EER

I N

Project Director:	Brent J. Heuser/University of Illinois			
Partner Institutions:	University of Illinois:	Brent J. Heuser, Thomasz Kozlowski, Rizwan Uddin, James F. Stubbins, Dallas R. Trinkle, Robert. S. Averback		
	University of Michigan:	Thomas J. Downar, Gary S. Was		
	University of Florida:	Yong Yang, Simon R. Phillpot		
	Idaho National Laboratory:	Piyush Sabharwall, Michael V. Glazoff, Jason D. Hales		
	University of Manchester	Michael Preuss, Simon M. Pimblott, M. Burke, E. Jimenex-Melero, Fabio Scenin Philip J. Withers		
	ATI Wah Chang:	Melissa Martinez, Greg Vignoul		

<u>I</u> 1867

G

А

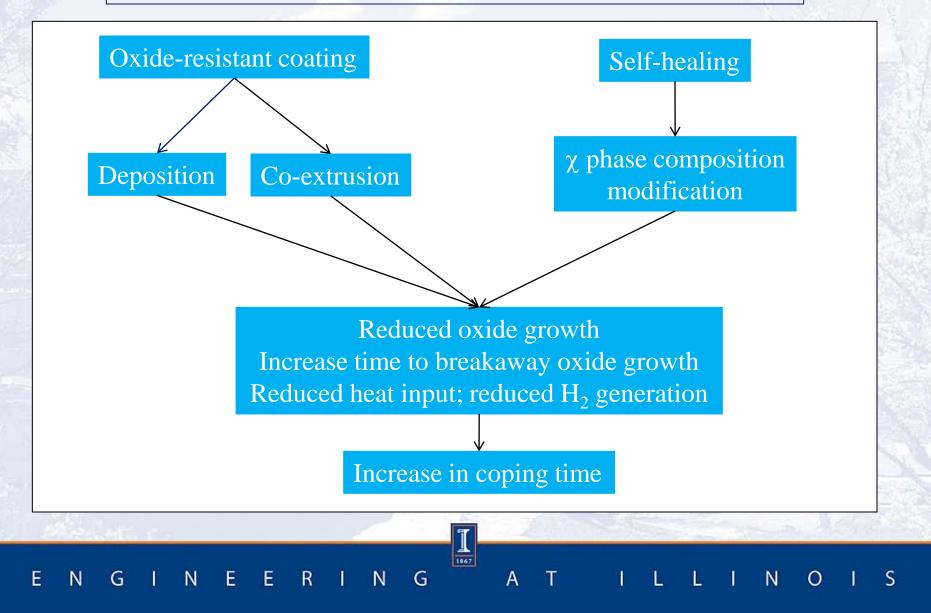
Т

I L L

Ν

0

UIUC AFT-IRP Philosophical Approach


U.S. LWR assets are safe, well-maintained, and well-operated.

Zr-based cladding performs well in LWRs under normal operational conditions.
Extensive performance data base with respect to normal and transient conditions.
Regulatory approval/industry acceptance for modified Zr-based cladding path of least resistance.

Modifications of Zr-based cladding can lead to ATF without significant impact on performance under normal operational conditions.

<u>Two Solution Pathways to Mitigate Accelerated</u> <u>Oxidation and H₂(g) Production</u>

Self-healing pathway

ATI Wah Chang (intermediate stock supplier)

1867

A

Т

χ phases with additives: Si, Al, Mo, Cr

Zircaloy

Composition ^a (weight %) of various zirconium alloys.								
Alloys	Tin	Iron	Chromium	Nickel	Niobium			
Zircaloy-1	2.50	-	- /	-	-			
Zircaloy-2	1.50	0.12	0.10	0.05	-			
			1					
Zircaloy-3A	0.25	0.25	$-\chi$ phases	-	-			
Zircaloy-3B	0.50	0.40	_	_	-			
Zircaloy-3C	0.50	0.20	-	0.20	-			
Zircaloy-4	1.50	0.20	0.10	-	-			
ZIRLO	1.02	0.10	-	-	1.01			
M5 [®]	-	0.05	0.015	-	1.0			
É110	-	-	-	-	0.95-1.05			
É125	-	-	-	_	2.20-2.60			
É635	1.1-1.3	0.3-0.4	-	-	0.95-1.05			
OPT ZIRLO	0.66	0.11	-	-	1.04			
X5A (AXIOM)	0.5	0.35	0.25		0.3			

^a Remainder zirconium.

E

N

G

N

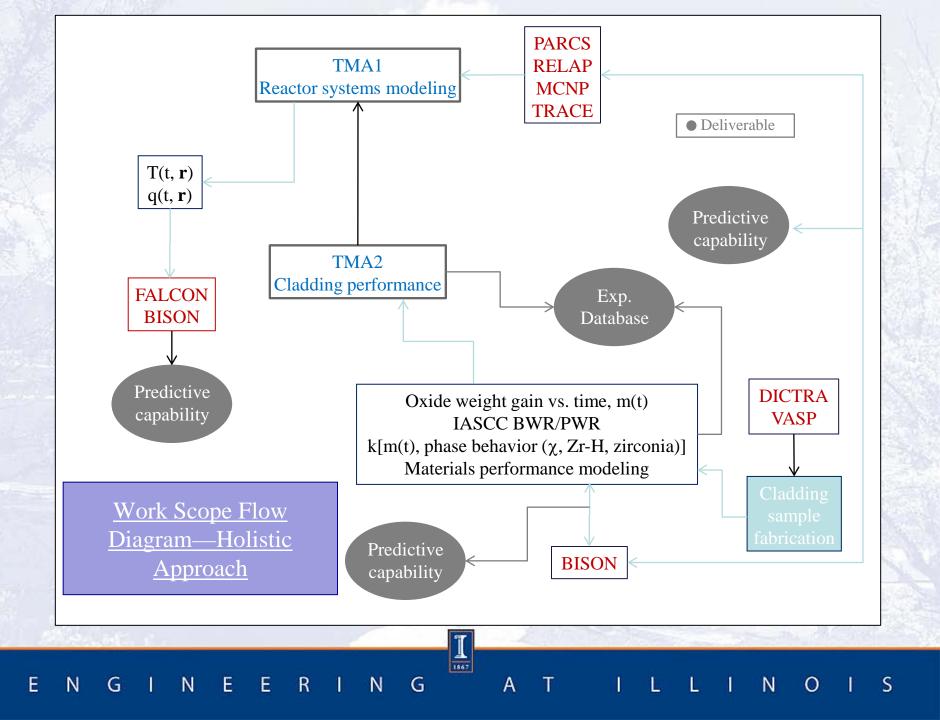
E E

R

N

G

Additives segregate to free surface; incorporated into oxide; lower growth kinetics; longer onset to accelerated oxide growth.


χ precipitates dissolve ~900 C

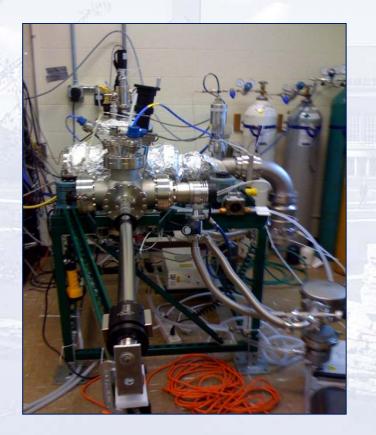
T

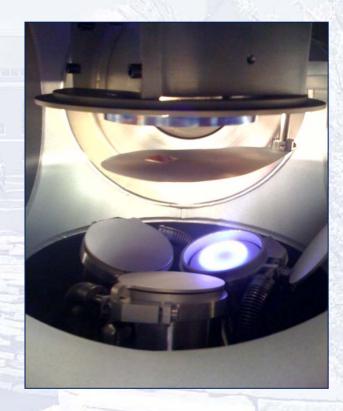
Stable χ precipitates at LWR operating T

N


0

Participation Interconnections


Ε


N

Experimental Capabilities—Sample Fabrication

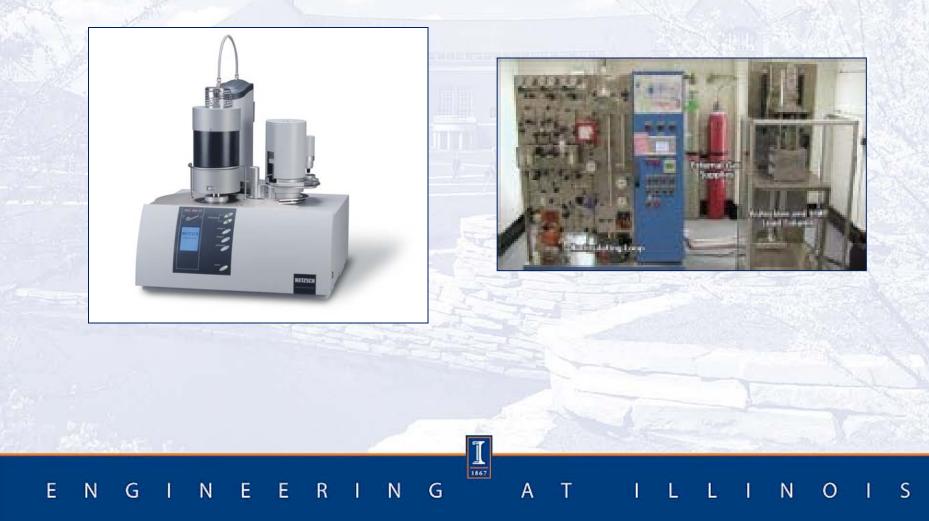
Sputter deposition: U. Illinois Cladding fabrication: ATI Wah Chang

ENGINEERING

A

1867

ΙΝΟΙ


Experimental Capabilities—In-service corrosion

Autoclave capability: U. Michigan, U. Florida, U. Manchester Ion accelerator capability: U. Illinois, U. Michigan, U. Manchester


Experimental Capabilities—Off-normal oxidation

TGA: U. Illinois, U. Manchester

Experimental Capabilities—Microanalytical Characterization

Microanalytical: U. Illinois (FS-MRL), U. Michigan, U. Florida, U. Manchester AES, TOF-SIMS, XPS, FIB, X-ray based techniques, TEM, SEM, AFM,... ANL: IVEM, APS

U.S. DOE NEUP/U.K. RCEP Investment

Table 5. Summary of budget allocation for IRP partners.

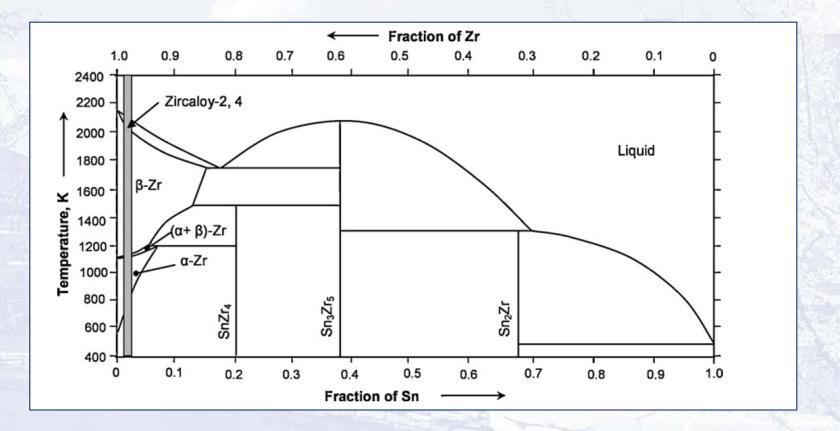
Partner	Year 1	Year 2	Year 3	Total
U. Illinois	\$538,764	\$543,416	\$557,768	\$1,639,945
U. Michigan	\$230,000	\$230,000	\$230,000	\$690,000
U. Florida	\$213,180	\$165,492	\$161,329	\$540,000
INL	\$150,000	\$150,000	\$150,000	\$450,000
ATI Wah Chang	\$60,000	\$60,000	\$60,000	\$180,000
U. Manchester (funded	£984,270*			
TOTALS	\$1,191,944	\$1,148,908	\$1,159,097	\$3,499,945*

1867

А

Т

N


G

NGINEER

Е

LINO

Zr-Sn phase diagram

1867

А

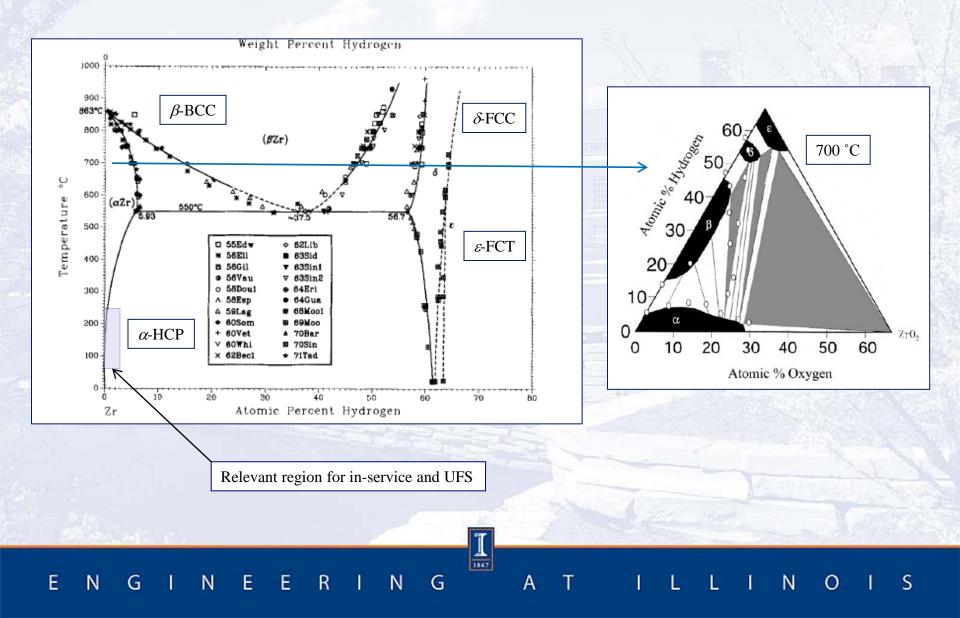
Т

L

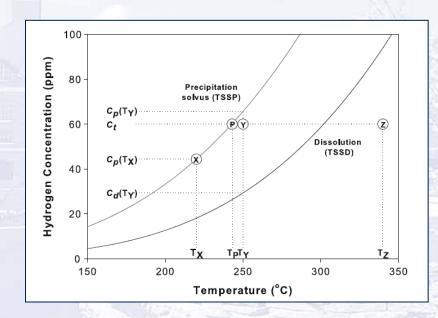
L

1

Ν


0

Ν


G

ENGINEERI

Zr-H and Zr-H-O Phase Diagrams

Zr-H phase behavior at low H concentration

G.A. McRae et al./Journal of Nuclear Materials 396 (2010) 130-143

А

Т

N

G

NGINEERI

Е

S

N

0

Conclusions

- Multidisciplinary Approach to Accident Tolerant Fuel Cladding – materials, neutronics, irradiation performance, processing, corrosion, ...
- Response to large amounts of H generation due to high temperature oxidation of Zr-base cladding
- A major concern both Post-Three Mile Island and Post-Fukushima

G

Т

A

Ν

0

S

• International Collaborations

NGINEERIN